from kungfu_pandas.kungfu import *
¶
agg_by_col(df, by=None, col=None, agg='sum', asc=False)
¶
Show source code in kungfu_pandas/kungfu.py
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
|
Groups by column 'by', aggregates column 'col' with 'agg' and orders by their values ascending or descedning
Parameters
Name | Type | Description | Default |
---|---|---|---|
df |
DataFrame |
dataframe to count. | required |
by |
str |
column name of the dataframe to group by. | None |
col |
str |
column name of the dataframe to summarise. | None |
agg |
str |
aggregation function to summarise col. | 'sum' |
asc |
bool |
sort by aggregation result, ascending or descending. | False |
Usage:
import pandas as pd
from kungfu_pandas import count
df = pd.DataFrame({
'x': [1, 2, 3, 0, 0, 1],
'group': ['a', 'a', 'a', 'b', 'b', 'b']
})
(
df
.pipe(agg_by_col, by='group', col='x', agg='mean')
)
case_when(df, cases)
¶
Show source code in kungfu_pandas/kungfu.py
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
|
This is the pandas equivalent of SQL case when. If no cases match, NaN is returned.
Parameters
Name | Type | Description | Default |
---|---|---|---|
df |
DataFrame |
dataframe to apply case when to. | required |
cases |
Union[Dict[Callable, Any], List[Tuple[Callable, Any]]] |
dictionary of functions and their output values. It can also be a list of tuples where the first element should be the function and the second the value. It is important to note that this dictionary is ordered as in a sql case when | required |
Usage:
import pandas as pd
from kungfu_pandas import case_when
df = pd.DataFrame({
'x': [1, 2, 3, 0, 0, 1],
'group': ['a', 'a', 'a', 'b', 'b', 'b']
})
(
df
.pipe(case_when, [
(lambda d: d['x'] == 0, 0),
(lambda d: (d['x'] == 1) & (d['group'] == 'a'), 1),
(lambda d: (d['x'] == 1) & (d['group'] == 'b'), 2),
(lambda d: d['x'] >= 3, 3),
])
)
(
df
.assign(
new_x=lambda old_df:
case_when(old_df, {
lambda d: d['x'] == 0: 0,
lambda d: (d['x'] == 1) & (d['group'] == 'a'): 1,
lambda d: (d['x'] == 1) & (d['group'] == 'b'): 2,
lambda d: d['x'] >= 3: 3,
})
)
)
count(df, by=None)
¶
Show source code in kungfu_pandas/kungfu.py
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
|
Counts by column, if no column is given just gives total count
Parameters
Name | Type | Description | Default |
---|---|---|---|
df |
DataFrame |
dataframe to count. | required |
by |
str |
column name of the dataframe to group and count by. | None |
Usage:
import pandas as pd
from kungfu_pandas import count
df = pd.DataFrame({
'x': [1, 2, 3, 0, 0, 1],
'group': ['a', 'a', 'a', 'b', 'b', 'b']
})
(
df
.pipe(count, by='group')
)
mask(df, key, function)
¶
Show source code in kungfu_pandas/kungfu.py
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 |
|
Returns a filtered dataframe, by applying function to key
Parameters
Name | Type | Description | Default |
---|---|---|---|
df |
DataFrame |
dataframe to be masked. | required |
key |
str |
column name of the dataframe to apply function to. | required |
function |
Callable |
function applied to the key for filtering. | required |
Usage:
import pandas as pd
from kungfu_pandas import mask
df = pd.DataFrame({
'x': [1, 2, 3, 0, 0, 1],
'group': ['a', 'a', 'a', 'b', 'b', 'b']
})
def is_zero(x):
return x == 0
(
df
.pipe(mask, 'x', is_zero)
)