Skip to content

from cluster_experiments.experiment_analysis import *

ClusteredOLSAnalysis

Bases: OLSAnalysis

Class to run OLS clustered analysis

Parameters:

Name Type Description Default
cluster_cols List[str]

list of columns to use as clusters

required
target_col str

name of the column containing the variable to measure

'target'
treatment_col str

name of the column containing the treatment variable

'treatment'
treatment str

name of the treatment to use as the treated group

'B'
covariates Optional[List[str]]

list of columns to use as covariates

None
hypothesis str

one of "two-sided", "less", "greater" indicating the alternative hypothesis

'two-sided'
add_covariate_interaction bool

bool, if True, adds interaction terms between covariates and treatment

False

Usage:

from cluster_experiments.experiment_analysis import ClusteredOLSAnalysis
import pandas as pd

df = pd.DataFrame({
    'x': [1, 2, 3, 0, 0, 1, 2, 0],
    'treatment': ["A"] * 2 + ["B"] * 2 + ["A"] * 2 + ["B"] * 2,
    'cluster': [1, 1, 2, 2, 3, 3, 4, 4],
})

ClusteredOLSAnalysis(
    cluster_cols=['cluster'],
    target_col='x',
).get_pvalue(df)
Source code in cluster_experiments/experiment_analysis.py
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
class ClusteredOLSAnalysis(OLSAnalysis):
    """
    Class to run OLS clustered analysis

    Arguments:
        cluster_cols: list of columns to use as clusters
        target_col: name of the column containing the variable to measure
        treatment_col: name of the column containing the treatment variable
        treatment: name of the treatment to use as the treated group
        covariates: list of columns to use as covariates
        hypothesis: one of "two-sided", "less", "greater" indicating the alternative hypothesis
        add_covariate_interaction: bool, if True, adds interaction terms between covariates and treatment

    Usage:

    ```python
    from cluster_experiments.experiment_analysis import ClusteredOLSAnalysis
    import pandas as pd

    df = pd.DataFrame({
        'x': [1, 2, 3, 0, 0, 1, 2, 0],
        'treatment': ["A"] * 2 + ["B"] * 2 + ["A"] * 2 + ["B"] * 2,
        'cluster': [1, 1, 2, 2, 3, 3, 4, 4],
    })

    ClusteredOLSAnalysis(
        cluster_cols=['cluster'],
        target_col='x',
    ).get_pvalue(df)
    ```
    """

    def __init__(
        self,
        cluster_cols: List[str],
        target_col: str = "target",
        treatment_col: str = "treatment",
        treatment: str = "B",
        covariates: Optional[List[str]] = None,
        hypothesis: str = "two-sided",
        add_covariate_interaction: bool = False,
    ):
        super().__init__(
            target_col=target_col,
            treatment_col=treatment_col,
            treatment=treatment,
            covariates=covariates,
            hypothesis=hypothesis,
            cov_type="cluster",
            add_covariate_interaction=add_covariate_interaction,
        )
        self.cluster_cols = cluster_cols

    def fit_ols(self, df: pd.DataFrame):
        """Returns the fitted OLS model"""
        if self.add_covariate_interaction:
            df = self._add_interaction_covariates(df)
        return sm.OLS.from_formula(self.formula, data=df,).fit(
            cov_type=self.cov_type,
            cov_kwds={"groups": self._get_cluster_column(df)},
        )

    @classmethod
    def from_config(cls, config):
        """Creates an OLSAnalysis object from a PowerConfig object"""
        return cls(
            target_col=config.target_col,
            treatment_col=config.treatment_col,
            treatment=config.treatment,
            covariates=config.covariates,
            hypothesis=config.hypothesis,
            cluster_cols=config.cluster_cols,
            add_covariate_interaction=config.add_covariate_interaction,
        )

fit_ols(df)

Returns the fitted OLS model

Source code in cluster_experiments/experiment_analysis.py
881
882
883
884
885
886
887
888
def fit_ols(self, df: pd.DataFrame):
    """Returns the fitted OLS model"""
    if self.add_covariate_interaction:
        df = self._add_interaction_covariates(df)
    return sm.OLS.from_formula(self.formula, data=df,).fit(
        cov_type=self.cov_type,
        cov_kwds={"groups": self._get_cluster_column(df)},
    )

from_config(config) classmethod

Creates an OLSAnalysis object from a PowerConfig object

Source code in cluster_experiments/experiment_analysis.py
890
891
892
893
894
895
896
897
898
899
900
901
@classmethod
def from_config(cls, config):
    """Creates an OLSAnalysis object from a PowerConfig object"""
    return cls(
        target_col=config.target_col,
        treatment_col=config.treatment_col,
        treatment=config.treatment,
        covariates=config.covariates,
        hypothesis=config.hypothesis,
        cluster_cols=config.cluster_cols,
        add_covariate_interaction=config.add_covariate_interaction,
    )

ConfidenceInterval dataclass

Class to define the structure of a confidence interval.

Source code in cluster_experiments/experiment_analysis.py
17
18
19
20
21
22
23
24
25
@dataclass
class ConfidenceInterval:
    """
    Class to define the structure of a confidence interval.
    """

    lower: float
    upper: float
    alpha: float

DeltaMethodAnalysis

Bases: ExperimentAnalysis

Source code in cluster_experiments/experiment_analysis.py
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
class DeltaMethodAnalysis(ExperimentAnalysis):
    def __init__(
        self,
        cluster_cols: Optional[List[str]] = None,
        target_col: str = "target",
        scale_col: str = "scale",
        treatment_col: str = "treatment",
        treatment: str = "B",
        covariates: Optional[List[str]] = None,
        hypothesis: str = "two-sided",
    ):
        """
        Class to run the Delta Method approximation for estimating the treatment effect on a ratio metric (target/scale) under a clustered design.
        The analysis is done on the aggregated data at the cluster level, making computation more efficient.

        Arguments:
            cluster_cols: list of columns to use as clusters. Not available for the CUPED method.
            target_col: name of the column containing the variable to measure (the numerator of the ratio).
            scale_col: name of the column containing the scale variable (the denominator of the ratio).
            treatment_col: name of the column containing the treatment variable.
            treatment: name of the treatment to use as the treated group.
            covariates: list of columns to use as covariates.
            ratio_covariates: list of tuples of columns to use as covariates for ratio metrics. First element is the numerator column, second element is the denominator column.
            hypothesis: one of "two-sided", "less", "greater" indicating the alternative hypothesis.

            Usage:
            ```python
            import pandas as pd

            from cluster_experiments.experiment_analysis import DeltaMethodAnalysis

            df = pd.DataFrame({
                'x': [1, 2, 3, 0, 0, 1] * 2,
                'y': [2, 2, 5, 1, 1, 1] * 2,
                'treatment': ["A"] * 6 + ["B"] * 6,
                'cluster': [1, 2, 3, 1, 2, 3] * 2,
            })

            DeltaMethodAnalysis(
                cluster_cols=['cluster'],
                target_col='x',
                scale_col='y'
            ).get_pvalue(df)
            ```
        """

        super().__init__(
            target_col=target_col,
            treatment_col=treatment_col,
            cluster_cols=cluster_cols,
            treatment=treatment,
            covariates=covariates,
            hypothesis=hypothesis,
        )
        self.scale_col = scale_col
        self.cluster_cols = cluster_cols or []

        if covariates is not None:
            warnings.warn(
                "Covariates are not supported in the Delta Method approximation for the time being. They will be ignored."
            )
        if cluster_cols is None:
            raise ValueError(
                "cluster_cols must be provided for the Delta Method analysis"
            )

    def _aggregate_to_cluster(self, df: pd.DataFrame) -> pd.DataFrame:
        """
        Returns an aggreegated dataframe of the target and scale variables at the cluster (and treatment) level.

        Arguments:
            df: dataframe containing the data to analyze
        """
        group_cols = self.cluster_cols + [self.treatment_col]
        aggregate_df = df.groupby(by=group_cols, as_index=False).agg(
            {self.target_col: "sum", self.scale_col: "sum"}
        )
        return aggregate_df

    def _get_group_mean_and_variance(self, df: pd.DataFrame) -> tuple[float, float]:
        """
        Returns the mean and variance of the ratio metric (target/scale) as estimated by the delta method for a given group (treatment).

        Arguments:
            df: dataframe containing the data to analyze.
        """
        df = self._aggregate_to_cluster(df)
        group_size = len(df)

        if group_size < 1000:
            self.__warn_small_group_size()

        target_mean, scale_mean = df.loc[:, [self.target_col, self.scale_col]].mean()
        target_variance, scale_variance = df.loc[
            :, [self.target_col, self.scale_col]
        ].var()
        target_sum, scale_sum = df.loc[:, [self.target_col, self.scale_col]].sum()

        target_scale_cov = df.loc[:, self.target_col].cov(df.loc[:, self.scale_col])

        group_mean = target_sum / scale_sum
        group_variance = (
            (1 / (scale_mean**2)) * target_variance
            + (target_mean**2) / (scale_mean**4) * scale_variance
            - (2 * target_mean) / (scale_mean**3) * target_scale_cov
        ) / group_size
        return group_mean, group_variance

    def _get_mean_standard_error(self, df: pd.DataFrame) -> tuple[float, float]:
        """
        Returns mean and variance of the ratio metric (target/scale) for a given cluster (i.e. user) computed using the Delta Method.
        Variance reduction is used if covariates are given.
        """

        is_treatment = df[self.treatment_col] == 1
        treat_mean, treat_var = self._get_group_mean_and_variance(df[is_treatment])
        ctrl_mean, ctrl_var = self._get_group_mean_and_variance(df[~is_treatment])

        mean_diff = treat_mean - ctrl_mean
        standard_error = np.sqrt(treat_var + ctrl_var)

        return mean_diff, standard_error

    def analysis_pvalue(self, df: pd.DataFrame) -> float:
        """
        Returns the p-value of the analysis.

        Arguments:
            df: dataframe containing the data to analyze.
        """

        mean_diff, standard_error = self._get_mean_standard_error(df)

        z_score = mean_diff / standard_error
        p_value = 2 * (1 - norm.cdf(abs(z_score)))

        results_delta = ModelResults(
            params={self.treatment_col: mean_diff},
            pvalues={self.treatment_col: p_value},
        )

        p_value = self.pvalue_based_on_hypothesis(results_delta)

        return p_value

    def analysis_point_estimate(self, df: pd.DataFrame) -> float:
        """Returns the point estimate of the analysis
        Arguments:
            df: dataframe containing the data to analyze
            verbose (Optional): bool, prints the regression summary if True
        """
        mean_diff, _standard_error = self._get_mean_standard_error(df)
        return mean_diff

    def analysis_standard_error(self, df: pd.DataFrame) -> float:
        """Returns the standard error of the analysis
        Arguments:
            df: dataframe containing the data to analyze
            verbose (Optional): bool, prints the regression summary if True
        """
        _mean_diff, standard_error = self._get_mean_standard_error(df)
        return standard_error

    def analysis_confidence_interval(
        self, df: pd.DataFrame, alpha: float, verbose: bool = False
    ) -> ConfidenceInterval:
        """Returns the confidence interval of the analysis
        Arguments:
            df: dataframe containing the data to analyze
            alpha: significance level
        """
        ate, std_error = self._get_mean_standard_error(df)

        z_score = ate / std_error
        p_value = 2 * (1 - norm.cdf(abs(z_score)))

        results_delta = ModelResults(
            params={self.treatment_col: ate},
            pvalues={self.treatment_col: p_value},
        )

        p_value = self.pvalue_based_on_hypothesis(results_delta)

        # Extract the confidence interval for the treatment column
        crit_z_score = norm.ppf(1 - alpha / 2)
        conf_int = crit_z_score * std_error
        lower_bound, upper_bound = ate - conf_int, ate + conf_int

        # Return the confidence interval
        return ConfidenceInterval(lower=lower_bound, upper=upper_bound, alpha=alpha)

    def analysis_inference_results(
        self, df: pd.DataFrame, alpha: float, verbose: bool = False
    ) -> InferenceResults:
        """Returns the inference results of the analysis
        Arguments:
            df: dataframe containing the data to analyze
            alpha: significance level
        """
        ate, std_error = self._get_mean_standard_error(df)

        z_score = ate / std_error
        p_value = 2 * (1 - norm.cdf(abs(z_score)))

        results_delta = ModelResults(
            params={self.treatment_col: ate},
            pvalues={self.treatment_col: p_value},
        )

        p_value = self.pvalue_based_on_hypothesis(results_delta)

        # Extract the confidence interval for the treatment column
        crit_z_score = norm.ppf(1 - alpha / 2)
        conf_int = crit_z_score * std_error
        lower_bound, upper_bound = ate - conf_int, ate + conf_int

        # Return the confidence interval
        return InferenceResults(
            ate=ate,
            p_value=p_value,
            std_error=std_error,
            conf_int=ConfidenceInterval(
                lower=lower_bound, upper=upper_bound, alpha=alpha
            ),
        )

    @classmethod
    def from_config(cls, config):
        """Creates a DeltaMethodAnalysis object from a PowerConfig object"""
        return cls(
            cluster_cols=config.cluster_cols,
            target_col=config.target_col,
            scale_col=config.scale_col,
            treatment_col=config.treatment_col,
            treatment=config.treatment,
            hypothesis=config.hypothesis,
        )

    def __warn_small_group_size(self):
        warnings.warn(
            "Delta Method approximation may not be accurate for small group sizes"
        )

__init__(cluster_cols=None, target_col='target', scale_col='scale', treatment_col='treatment', treatment='B', covariates=None, hypothesis='two-sided')

Class to run the Delta Method approximation for estimating the treatment effect on a ratio metric (target/scale) under a clustered design. The analysis is done on the aggregated data at the cluster level, making computation more efficient.

Parameters:

Name Type Description Default
cluster_cols Optional[List[str]]

list of columns to use as clusters. Not available for the CUPED method.

None
target_col str

name of the column containing the variable to measure (the numerator of the ratio).

'target'
scale_col str

name of the column containing the scale variable (the denominator of the ratio).

'scale'
treatment_col str

name of the column containing the treatment variable.

'treatment'
treatment str

name of the treatment to use as the treated group.

'B'
covariates Optional[List[str]]

list of columns to use as covariates.

None
ratio_covariates

list of tuples of columns to use as covariates for ratio metrics. First element is the numerator column, second element is the denominator column.

required
hypothesis str

one of "two-sided", "less", "greater" indicating the alternative hypothesis.

'two-sided'
Usage
required
Source code in cluster_experiments/experiment_analysis.py
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
def __init__(
    self,
    cluster_cols: Optional[List[str]] = None,
    target_col: str = "target",
    scale_col: str = "scale",
    treatment_col: str = "treatment",
    treatment: str = "B",
    covariates: Optional[List[str]] = None,
    hypothesis: str = "two-sided",
):
    """
    Class to run the Delta Method approximation for estimating the treatment effect on a ratio metric (target/scale) under a clustered design.
    The analysis is done on the aggregated data at the cluster level, making computation more efficient.

    Arguments:
        cluster_cols: list of columns to use as clusters. Not available for the CUPED method.
        target_col: name of the column containing the variable to measure (the numerator of the ratio).
        scale_col: name of the column containing the scale variable (the denominator of the ratio).
        treatment_col: name of the column containing the treatment variable.
        treatment: name of the treatment to use as the treated group.
        covariates: list of columns to use as covariates.
        ratio_covariates: list of tuples of columns to use as covariates for ratio metrics. First element is the numerator column, second element is the denominator column.
        hypothesis: one of "two-sided", "less", "greater" indicating the alternative hypothesis.

        Usage:
        ```python
        import pandas as pd

        from cluster_experiments.experiment_analysis import DeltaMethodAnalysis

        df = pd.DataFrame({
            'x': [1, 2, 3, 0, 0, 1] * 2,
            'y': [2, 2, 5, 1, 1, 1] * 2,
            'treatment': ["A"] * 6 + ["B"] * 6,
            'cluster': [1, 2, 3, 1, 2, 3] * 2,
        })

        DeltaMethodAnalysis(
            cluster_cols=['cluster'],
            target_col='x',
            scale_col='y'
        ).get_pvalue(df)
        ```
    """

    super().__init__(
        target_col=target_col,
        treatment_col=treatment_col,
        cluster_cols=cluster_cols,
        treatment=treatment,
        covariates=covariates,
        hypothesis=hypothesis,
    )
    self.scale_col = scale_col
    self.cluster_cols = cluster_cols or []

    if covariates is not None:
        warnings.warn(
            "Covariates are not supported in the Delta Method approximation for the time being. They will be ignored."
        )
    if cluster_cols is None:
        raise ValueError(
            "cluster_cols must be provided for the Delta Method analysis"
        )

analysis_confidence_interval(df, alpha, verbose=False)

Returns the confidence interval of the analysis Arguments: df: dataframe containing the data to analyze alpha: significance level

Source code in cluster_experiments/experiment_analysis.py
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
def analysis_confidence_interval(
    self, df: pd.DataFrame, alpha: float, verbose: bool = False
) -> ConfidenceInterval:
    """Returns the confidence interval of the analysis
    Arguments:
        df: dataframe containing the data to analyze
        alpha: significance level
    """
    ate, std_error = self._get_mean_standard_error(df)

    z_score = ate / std_error
    p_value = 2 * (1 - norm.cdf(abs(z_score)))

    results_delta = ModelResults(
        params={self.treatment_col: ate},
        pvalues={self.treatment_col: p_value},
    )

    p_value = self.pvalue_based_on_hypothesis(results_delta)

    # Extract the confidence interval for the treatment column
    crit_z_score = norm.ppf(1 - alpha / 2)
    conf_int = crit_z_score * std_error
    lower_bound, upper_bound = ate - conf_int, ate + conf_int

    # Return the confidence interval
    return ConfidenceInterval(lower=lower_bound, upper=upper_bound, alpha=alpha)

analysis_inference_results(df, alpha, verbose=False)

Returns the inference results of the analysis Arguments: df: dataframe containing the data to analyze alpha: significance level

Source code in cluster_experiments/experiment_analysis.py
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
def analysis_inference_results(
    self, df: pd.DataFrame, alpha: float, verbose: bool = False
) -> InferenceResults:
    """Returns the inference results of the analysis
    Arguments:
        df: dataframe containing the data to analyze
        alpha: significance level
    """
    ate, std_error = self._get_mean_standard_error(df)

    z_score = ate / std_error
    p_value = 2 * (1 - norm.cdf(abs(z_score)))

    results_delta = ModelResults(
        params={self.treatment_col: ate},
        pvalues={self.treatment_col: p_value},
    )

    p_value = self.pvalue_based_on_hypothesis(results_delta)

    # Extract the confidence interval for the treatment column
    crit_z_score = norm.ppf(1 - alpha / 2)
    conf_int = crit_z_score * std_error
    lower_bound, upper_bound = ate - conf_int, ate + conf_int

    # Return the confidence interval
    return InferenceResults(
        ate=ate,
        p_value=p_value,
        std_error=std_error,
        conf_int=ConfidenceInterval(
            lower=lower_bound, upper=upper_bound, alpha=alpha
        ),
    )

analysis_point_estimate(df)

Returns the point estimate of the analysis Arguments: df: dataframe containing the data to analyze verbose (Optional): bool, prints the regression summary if True

Source code in cluster_experiments/experiment_analysis.py
1364
1365
1366
1367
1368
1369
1370
1371
def analysis_point_estimate(self, df: pd.DataFrame) -> float:
    """Returns the point estimate of the analysis
    Arguments:
        df: dataframe containing the data to analyze
        verbose (Optional): bool, prints the regression summary if True
    """
    mean_diff, _standard_error = self._get_mean_standard_error(df)
    return mean_diff

analysis_pvalue(df)

Returns the p-value of the analysis.

Parameters:

Name Type Description Default
df DataFrame

dataframe containing the data to analyze.

required
Source code in cluster_experiments/experiment_analysis.py
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
def analysis_pvalue(self, df: pd.DataFrame) -> float:
    """
    Returns the p-value of the analysis.

    Arguments:
        df: dataframe containing the data to analyze.
    """

    mean_diff, standard_error = self._get_mean_standard_error(df)

    z_score = mean_diff / standard_error
    p_value = 2 * (1 - norm.cdf(abs(z_score)))

    results_delta = ModelResults(
        params={self.treatment_col: mean_diff},
        pvalues={self.treatment_col: p_value},
    )

    p_value = self.pvalue_based_on_hypothesis(results_delta)

    return p_value

analysis_standard_error(df)

Returns the standard error of the analysis Arguments: df: dataframe containing the data to analyze verbose (Optional): bool, prints the regression summary if True

Source code in cluster_experiments/experiment_analysis.py
1373
1374
1375
1376
1377
1378
1379
1380
def analysis_standard_error(self, df: pd.DataFrame) -> float:
    """Returns the standard error of the analysis
    Arguments:
        df: dataframe containing the data to analyze
        verbose (Optional): bool, prints the regression summary if True
    """
    _mean_diff, standard_error = self._get_mean_standard_error(df)
    return standard_error

from_config(config) classmethod

Creates a DeltaMethodAnalysis object from a PowerConfig object

Source code in cluster_experiments/experiment_analysis.py
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
@classmethod
def from_config(cls, config):
    """Creates a DeltaMethodAnalysis object from a PowerConfig object"""
    return cls(
        cluster_cols=config.cluster_cols,
        target_col=config.target_col,
        scale_col=config.scale_col,
        treatment_col=config.treatment_col,
        treatment=config.treatment,
        hypothesis=config.hypothesis,
    )

ExperimentAnalysis

Bases: ABC

Abstract class to run the analysis of a given experiment

In order to create your own ExperimentAnalysis, you should create a derived class that implements the analysis_pvalue method.

It can also be used as a component of the PowerAnalysis class.

Parameters:

Name Type Description Default
cluster_cols List[str]

list of columns to use as clusters

required
target_col str

name of the column containing the variable to measure

'target'
treatment_col str

name of the column containing the treatment variable

'treatment'
treatment str

name of the treatment to use as the treated group

'B'
covariates Optional[List[str]]

list of columns to use as covariates

None
hypothesis str

one of "two-sided", "less", "greater" indicating the alternative hypothesis

'two-sided'
Source code in cluster_experiments/experiment_analysis.py
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
class ExperimentAnalysis(ABC):
    """
    Abstract class to run the analysis of a given experiment

    In order to create your own ExperimentAnalysis,
    you should create a derived class that implements the analysis_pvalue method.

    It can also be used as a component of the PowerAnalysis class.

    Arguments:
        cluster_cols: list of columns to use as clusters
        target_col: name of the column containing the variable to measure
        treatment_col: name of the column containing the treatment variable
        treatment: name of the treatment to use as the treated group
        covariates: list of columns to use as covariates
        hypothesis: one of "two-sided", "less", "greater" indicating the alternative hypothesis

    """

    def __init__(
        self,
        cluster_cols: List[str],
        target_col: str = "target",
        treatment_col: str = "treatment",
        treatment: str = "B",
        covariates: Optional[List[str]] = None,
        hypothesis: str = "two-sided",
        add_covariate_interaction: bool = False,
    ):
        self.target_col = target_col
        self.treatment = treatment
        self.treatment_col = treatment_col
        self.cluster_cols = cluster_cols
        self.covariates = covariates or []
        self.hypothesis = hypothesis
        self.add_covariate_interaction = add_covariate_interaction

    def _get_cluster_column(self, df: pd.DataFrame) -> pd.Series:
        """Paste all strings of cluster_cols in one single column"""
        df = df.copy()
        return df[self.cluster_cols].astype(str).sum(axis=1)

    def _create_binary_treatment(self, df: pd.DataFrame) -> pd.DataFrame:
        """Transforms treatment column into 0 - 1 column"""
        df = df.copy()
        df[self.treatment_col] = (df[self.treatment_col] == self.treatment).astype(int)
        return df

    def _add_interaction_covariates(self, df: pd.DataFrame) -> pd.DataFrame:
        """For each covariate, adds a column with treatment * (x - mean(x))
        This is used to build a more efficient estimator of the ATE

        Args
        ----
            df (pd.DataFrame): input data frame

        Returns
        -------
            pd.DataFrame: data frame with additional columns

        """
        df = df.copy()
        if self.covariates is None:
            return df

        for covariate in self.covariates:
            df[f"__{covariate}__interaction"] = (
                df[covariate] - df[covariate].mean()
            ) * df[self.treatment_col]
        return df

    @property
    def formula(self):
        if len(self.covariates) == 0:
            # simple case, no covariates
            return f"{self.target_col} ~ {self.treatment_col}"

        if not self.add_covariate_interaction:
            # second case: covariates but not interaction
            return f"{self.target_col} ~ {self.treatment_col} + {' + '.join(self.covariates)}"

        # third case: covariates and interaction
        return f"{self.target_col} ~ {self.treatment_col} + {' + '.join(self.covariates)} + {' + '.join([f'__{covariate}__interaction' for covariate in self.covariates])}"

    @abstractmethod
    def analysis_pvalue(
        self,
        df: pd.DataFrame,
        verbose: bool = False,
    ) -> float:
        """
        Returns the p-value of the analysis. Expects treatment to be 0-1 variable
        Arguments:
            df: dataframe containing the data to analyze
            verbose (Optional): bool, prints the regression summary if True
        """

    def analysis_point_estimate(
        self,
        df: pd.DataFrame,
        verbose: bool = False,
    ) -> float:
        """
        Returns the point estimate of the analysis. Expects treatment to be 0-1 variable
        Arguments:
            df: dataframe containing the data to analyze
            verbose (Optional): bool, prints the regression summary if True
        """
        raise NotImplementedError("Point estimate not implemented for this analysis")

    def analysis_standard_error(
        self,
        df: pd.DataFrame,
        verbose: bool = False,
    ) -> float:
        """
        Returns the standard error of the analysis. Expects treatment to be 0-1 variable
        Arguments:
            df: dataframe containing the data to analyze
            verbose (Optional): bool, prints the regression summary if True
        """
        raise NotImplementedError("Standard error not implemented for this analysis")

    def analysis_confidence_interval(
        self,
        df: pd.DataFrame,
        alpha: float,
        verbose: bool = False,
    ) -> ConfidenceInterval:
        """
        Returns the confidence interval of the analysis. Expects treatment to be 0-1 variable
        Arguments:
            df: dataframe containing the data to analyze
            alpha: significance level
            verbose (Optional): bool, prints the regression summary if True
        """
        raise NotImplementedError(
            "Confidence Interval not implemented for this analysis"
        )

    def analysis_inference_results(
        self,
        df: pd.DataFrame,
        alpha: float,
        verbose: bool = False,
    ) -> InferenceResults:
        """
        Returns the InferenceResults object of the analysis. Expects treatment to be 0-1 variable
        Arguments:
            df: dataframe containing the data to analyze
            alpha: significance level
            verbose (Optional): bool, prints the regression summary if True
        """
        raise NotImplementedError(
            "Inference results are not implemented for this analysis"
        )

    def _data_checks(self, df: pd.DataFrame) -> None:
        """Checks that the data is correct"""
        if df[self.target_col].isnull().any():
            raise ValueError(
                f"There are null values in outcome column {self.treatment_col}"
            )

        if not is_numeric_dtype(df[self.target_col]):
            raise ValueError(
                f"Outcome column {self.target_col} should be numeric and not {df[self.target_col].dtype}"
            )

    def get_pvalue(self, df: pd.DataFrame) -> float:
        """Returns the p-value of the analysis

        Arguments:
            df: dataframe containing the data to analyze
        """
        df = df.copy()
        df = self._create_binary_treatment(df)
        self._data_checks(df=df)
        return self.analysis_pvalue(df)

    def get_point_estimate(self, df: pd.DataFrame) -> float:
        """Returns the point estimate of the analysis

        Arguments:
            df: dataframe containing the data to analyze
        """
        df = df.copy()
        df = self._create_binary_treatment(df)
        self._data_checks(df=df)
        return self.analysis_point_estimate(df)

    def get_standard_error(self, df: pd.DataFrame) -> float:
        """Returns the standard error of the analysis

        Arguments:
            df: dataframe containing the data to analyze
        """
        df = df.copy()
        df = self._create_binary_treatment(df)
        self._data_checks(df=df)
        return self.analysis_standard_error(df)

    def get_confidence_interval(
        self, df: pd.DataFrame, alpha: float
    ) -> ConfidenceInterval:
        """Returns the confidence interval of the analysis

        Arguments:
            df: dataframe containing the data to analyze
            alpha: significance level
        """
        df = df.copy()
        df = self._create_binary_treatment(df)
        self._data_checks(df=df)
        return self.analysis_confidence_interval(df, alpha)

    def get_inference_results(self, df: pd.DataFrame, alpha: float) -> InferenceResults:
        """Returns the inference results of the analysis

        Arguments:
            df: dataframe containing the data to analyze
            alpha: significance level
        """
        df = df.copy()
        df = self._create_binary_treatment(df)
        self._data_checks(df=df)
        return self.analysis_inference_results(df, alpha)

    def pvalue_based_on_hypothesis(
        self, model_result
    ) -> float:  # todo add typehint statsmodels result
        """Returns the p-value of the analysis
        Arguments:
            model_result: statsmodels result object
            verbose (Optional): bool, prints the regression summary if True

        """
        treatment_effect = model_result.params[self.treatment_col]
        p_value = model_result.pvalues[self.treatment_col]

        if HypothesisEntries(self.hypothesis) == HypothesisEntries.LESS:
            return p_value / 2 if treatment_effect <= 0 else 1 - p_value / 2
        if HypothesisEntries(self.hypothesis) == HypothesisEntries.GREATER:
            return p_value / 2 if treatment_effect >= 0 else 1 - p_value / 2
        if HypothesisEntries(self.hypothesis) == HypothesisEntries.TWO_SIDED:
            return p_value
        raise ValueError(f"{self.hypothesis} is not a valid HypothesisEntries")

    def _split_pre_experiment_df(self, df: pd.DataFrame):
        raise NotImplementedError(
            "This method should be implemented in the child class"
        )

    @classmethod
    def from_config(cls, config):
        """Creates an ExperimentAnalysis object from a PowerConfig object"""
        return cls(
            cluster_cols=config.cluster_cols,
            target_col=config.target_col,
            treatment_col=config.treatment_col,
            treatment=config.treatment,
            covariates=config.covariates,
            hypothesis=config.hypothesis,
            add_covariate_interaction=config.add_covariate_interaction,
        )

analysis_confidence_interval(df, alpha, verbose=False)

Returns the confidence interval of the analysis. Expects treatment to be 0-1 variable Arguments: df: dataframe containing the data to analyze alpha: significance level verbose (Optional): bool, prints the regression summary if True

Source code in cluster_experiments/experiment_analysis.py
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
def analysis_confidence_interval(
    self,
    df: pd.DataFrame,
    alpha: float,
    verbose: bool = False,
) -> ConfidenceInterval:
    """
    Returns the confidence interval of the analysis. Expects treatment to be 0-1 variable
    Arguments:
        df: dataframe containing the data to analyze
        alpha: significance level
        verbose (Optional): bool, prints the regression summary if True
    """
    raise NotImplementedError(
        "Confidence Interval not implemented for this analysis"
    )

analysis_inference_results(df, alpha, verbose=False)

Returns the InferenceResults object of the analysis. Expects treatment to be 0-1 variable Arguments: df: dataframe containing the data to analyze alpha: significance level verbose (Optional): bool, prints the regression summary if True

Source code in cluster_experiments/experiment_analysis.py
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
def analysis_inference_results(
    self,
    df: pd.DataFrame,
    alpha: float,
    verbose: bool = False,
) -> InferenceResults:
    """
    Returns the InferenceResults object of the analysis. Expects treatment to be 0-1 variable
    Arguments:
        df: dataframe containing the data to analyze
        alpha: significance level
        verbose (Optional): bool, prints the regression summary if True
    """
    raise NotImplementedError(
        "Inference results are not implemented for this analysis"
    )

analysis_point_estimate(df, verbose=False)

Returns the point estimate of the analysis. Expects treatment to be 0-1 variable Arguments: df: dataframe containing the data to analyze verbose (Optional): bool, prints the regression summary if True

Source code in cluster_experiments/experiment_analysis.py
137
138
139
140
141
142
143
144
145
146
147
148
def analysis_point_estimate(
    self,
    df: pd.DataFrame,
    verbose: bool = False,
) -> float:
    """
    Returns the point estimate of the analysis. Expects treatment to be 0-1 variable
    Arguments:
        df: dataframe containing the data to analyze
        verbose (Optional): bool, prints the regression summary if True
    """
    raise NotImplementedError("Point estimate not implemented for this analysis")

analysis_pvalue(df, verbose=False) abstractmethod

Returns the p-value of the analysis. Expects treatment to be 0-1 variable Arguments: df: dataframe containing the data to analyze verbose (Optional): bool, prints the regression summary if True

Source code in cluster_experiments/experiment_analysis.py
124
125
126
127
128
129
130
131
132
133
134
135
@abstractmethod
def analysis_pvalue(
    self,
    df: pd.DataFrame,
    verbose: bool = False,
) -> float:
    """
    Returns the p-value of the analysis. Expects treatment to be 0-1 variable
    Arguments:
        df: dataframe containing the data to analyze
        verbose (Optional): bool, prints the regression summary if True
    """

analysis_standard_error(df, verbose=False)

Returns the standard error of the analysis. Expects treatment to be 0-1 variable Arguments: df: dataframe containing the data to analyze verbose (Optional): bool, prints the regression summary if True

Source code in cluster_experiments/experiment_analysis.py
150
151
152
153
154
155
156
157
158
159
160
161
def analysis_standard_error(
    self,
    df: pd.DataFrame,
    verbose: bool = False,
) -> float:
    """
    Returns the standard error of the analysis. Expects treatment to be 0-1 variable
    Arguments:
        df: dataframe containing the data to analyze
        verbose (Optional): bool, prints the regression summary if True
    """
    raise NotImplementedError("Standard error not implemented for this analysis")

from_config(config) classmethod

Creates an ExperimentAnalysis object from a PowerConfig object

Source code in cluster_experiments/experiment_analysis.py
293
294
295
296
297
298
299
300
301
302
303
304
@classmethod
def from_config(cls, config):
    """Creates an ExperimentAnalysis object from a PowerConfig object"""
    return cls(
        cluster_cols=config.cluster_cols,
        target_col=config.target_col,
        treatment_col=config.treatment_col,
        treatment=config.treatment,
        covariates=config.covariates,
        hypothesis=config.hypothesis,
        add_covariate_interaction=config.add_covariate_interaction,
    )

get_confidence_interval(df, alpha)

Returns the confidence interval of the analysis

Parameters:

Name Type Description Default
df DataFrame

dataframe containing the data to analyze

required
alpha float

significance level

required
Source code in cluster_experiments/experiment_analysis.py
242
243
244
245
246
247
248
249
250
251
252
253
254
def get_confidence_interval(
    self, df: pd.DataFrame, alpha: float
) -> ConfidenceInterval:
    """Returns the confidence interval of the analysis

    Arguments:
        df: dataframe containing the data to analyze
        alpha: significance level
    """
    df = df.copy()
    df = self._create_binary_treatment(df)
    self._data_checks(df=df)
    return self.analysis_confidence_interval(df, alpha)

get_inference_results(df, alpha)

Returns the inference results of the analysis

Parameters:

Name Type Description Default
df DataFrame

dataframe containing the data to analyze

required
alpha float

significance level

required
Source code in cluster_experiments/experiment_analysis.py
256
257
258
259
260
261
262
263
264
265
266
def get_inference_results(self, df: pd.DataFrame, alpha: float) -> InferenceResults:
    """Returns the inference results of the analysis

    Arguments:
        df: dataframe containing the data to analyze
        alpha: significance level
    """
    df = df.copy()
    df = self._create_binary_treatment(df)
    self._data_checks(df=df)
    return self.analysis_inference_results(df, alpha)

get_point_estimate(df)

Returns the point estimate of the analysis

Parameters:

Name Type Description Default
df DataFrame

dataframe containing the data to analyze

required
Source code in cluster_experiments/experiment_analysis.py
220
221
222
223
224
225
226
227
228
229
def get_point_estimate(self, df: pd.DataFrame) -> float:
    """Returns the point estimate of the analysis

    Arguments:
        df: dataframe containing the data to analyze
    """
    df = df.copy()
    df = self._create_binary_treatment(df)
    self._data_checks(df=df)
    return self.analysis_point_estimate(df)

get_pvalue(df)

Returns the p-value of the analysis

Parameters:

Name Type Description Default
df DataFrame

dataframe containing the data to analyze

required
Source code in cluster_experiments/experiment_analysis.py
209
210
211
212
213
214
215
216
217
218
def get_pvalue(self, df: pd.DataFrame) -> float:
    """Returns the p-value of the analysis

    Arguments:
        df: dataframe containing the data to analyze
    """
    df = df.copy()
    df = self._create_binary_treatment(df)
    self._data_checks(df=df)
    return self.analysis_pvalue(df)

get_standard_error(df)

Returns the standard error of the analysis

Parameters:

Name Type Description Default
df DataFrame

dataframe containing the data to analyze

required
Source code in cluster_experiments/experiment_analysis.py
231
232
233
234
235
236
237
238
239
240
def get_standard_error(self, df: pd.DataFrame) -> float:
    """Returns the standard error of the analysis

    Arguments:
        df: dataframe containing the data to analyze
    """
    df = df.copy()
    df = self._create_binary_treatment(df)
    self._data_checks(df=df)
    return self.analysis_standard_error(df)

pvalue_based_on_hypothesis(model_result)

Returns the p-value of the analysis Arguments: model_result: statsmodels result object verbose (Optional): bool, prints the regression summary if True

Source code in cluster_experiments/experiment_analysis.py
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
def pvalue_based_on_hypothesis(
    self, model_result
) -> float:  # todo add typehint statsmodels result
    """Returns the p-value of the analysis
    Arguments:
        model_result: statsmodels result object
        verbose (Optional): bool, prints the regression summary if True

    """
    treatment_effect = model_result.params[self.treatment_col]
    p_value = model_result.pvalues[self.treatment_col]

    if HypothesisEntries(self.hypothesis) == HypothesisEntries.LESS:
        return p_value / 2 if treatment_effect <= 0 else 1 - p_value / 2
    if HypothesisEntries(self.hypothesis) == HypothesisEntries.GREATER:
        return p_value / 2 if treatment_effect >= 0 else 1 - p_value / 2
    if HypothesisEntries(self.hypothesis) == HypothesisEntries.TWO_SIDED:
        return p_value
    raise ValueError(f"{self.hypothesis} is not a valid HypothesisEntries")

GeeExperimentAnalysis

Bases: ExperimentAnalysis

Class to run GEE clustered analysis

Parameters:

Name Type Description Default
cluster_cols List[str]

list of columns to use as clusters

required
target_col str

name of the column containing the variable to measure

'target'
treatment_col str

name of the column containing the treatment variable

'treatment'
treatment str

name of the treatment to use as the treated group

'B'
covariates Optional[List[str]]

list of columns to use as covariates

None
hypothesis str

one of "two-sided", "less", "greater" indicating the alternative hypothesis

'two-sided'

Usage:

from cluster_experiments.experiment_analysis import GeeExperimentAnalysis
import pandas as pd

df = pd.DataFrame({
    'x': [1, 2, 3, 0, 0, 1],
    'treatment': ["A"] * 3 + ["B"] * 3,
    'cluster': [1] * 6,
})

GeeExperimentAnalysis(
    cluster_cols=['cluster'],
    target_col='x',
).get_pvalue(df)
Source code in cluster_experiments/experiment_analysis.py
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
class GeeExperimentAnalysis(ExperimentAnalysis):
    """
    Class to run GEE clustered analysis

    Arguments:
        cluster_cols: list of columns to use as clusters
        target_col: name of the column containing the variable to measure
        treatment_col: name of the column containing the treatment variable
        treatment: name of the treatment to use as the treated group
        covariates: list of columns to use as covariates
        hypothesis: one of "two-sided", "less", "greater" indicating the alternative hypothesis

    Usage:

    ```python
    from cluster_experiments.experiment_analysis import GeeExperimentAnalysis
    import pandas as pd

    df = pd.DataFrame({
        'x': [1, 2, 3, 0, 0, 1],
        'treatment': ["A"] * 3 + ["B"] * 3,
        'cluster': [1] * 6,
    })

    GeeExperimentAnalysis(
        cluster_cols=['cluster'],
        target_col='x',
    ).get_pvalue(df)
    ```
    """

    def __init__(
        self,
        cluster_cols: List[str],
        target_col: str = "target",
        treatment_col: str = "treatment",
        treatment: str = "B",
        covariates: Optional[List[str]] = None,
        hypothesis: str = "two-sided",
        add_covariate_interaction: bool = False,
    ):
        super().__init__(
            target_col=target_col,
            treatment_col=treatment_col,
            cluster_cols=cluster_cols,
            treatment=treatment,
            covariates=covariates,
            hypothesis=hypothesis,
            add_covariate_interaction=add_covariate_interaction,
        )
        self.fam = sm.families.Gaussian()
        self.va = sm.cov_struct.Exchangeable()

    def fit_gee(self, df: pd.DataFrame) -> sm.GEE:
        """Returns the fitted GEE model"""
        if self.add_covariate_interaction:
            df = self._add_interaction_covariates(df)
        return sm.GEE.from_formula(
            self.formula,
            data=df,
            groups=self._get_cluster_column(df),
            family=self.fam,
            cov_struct=self.va,
        ).fit()

    def analysis_pvalue(self, df: pd.DataFrame, verbose: bool = False) -> float:
        """Returns the p-value of the analysis
        Arguments:
            df: dataframe containing the data to analyze
            verbose (Optional): bool, prints the regression summary if True
        """
        results_gee = self.fit_gee(df)
        if verbose:
            print(results_gee.summary())

        p_value = self.pvalue_based_on_hypothesis(results_gee)
        return p_value

    def analysis_point_estimate(self, df: pd.DataFrame, verbose: bool = False) -> float:
        """Returns the point estimate of the analysis
        Arguments:
            df: dataframe containing the data to analyze
            verbose (Optional): bool, prints the regression summary if True
        """
        results_gee = self.fit_gee(df)
        return results_gee.params[self.treatment_col]

    def analysis_standard_error(self, df: pd.DataFrame, verbose: bool = False) -> float:
        """Returns the standard error of the analysis
        Arguments:
            df: dataframe containing the data to analyze
            verbose (Optional): bool, prints the regression summary if True
        """
        results_gee = self.fit_gee(df)
        return results_gee.bse[self.treatment_col]

    def analysis_confidence_interval(
        self, df: pd.DataFrame, alpha: float, verbose: bool = False
    ) -> ConfidenceInterval:
        """Returns the confidence interval of the analysis
        Arguments:
            df: dataframe containing the data to analyze
            alpha: significance level
            verbose (Optional): bool, prints the regression summary if True
        """
        results_gee = self.fit_gee(df)
        # Extract the confidence interval for the treatment column
        conf_int_df = results_gee.conf_int(alpha=alpha)
        lower_bound, upper_bound = conf_int_df.loc[self.treatment_col]

        if verbose:
            print(results_gee.summary())

        # Return the confidence interval
        return ConfidenceInterval(lower=lower_bound, upper=upper_bound, alpha=alpha)

    def analysis_inference_results(
        self, df: pd.DataFrame, alpha: float, verbose: bool = False
    ) -> InferenceResults:
        """Returns the inference results of the analysis
        Arguments:
            df: dataframe containing the data to analyze
            alpha: significance level
            verbose (Optional): bool, prints the regression summary if True
        """
        results_gee = self.fit_gee(df)

        std_error = results_gee.bse[self.treatment_col]
        ate = results_gee.params[self.treatment_col]
        p_value = self.pvalue_based_on_hypothesis(results_gee)

        # Extract the confidence interval for the treatment column
        conf_int_df = results_gee.conf_int(alpha=alpha)
        lower_bound, upper_bound = conf_int_df.loc[self.treatment_col]

        if verbose:
            print(results_gee.summary())

        # Return the confidence interval
        return InferenceResults(
            ate=ate,
            p_value=p_value,
            std_error=std_error,
            conf_int=ConfidenceInterval(
                lower=lower_bound, upper=upper_bound, alpha=alpha
            ),
        )

analysis_confidence_interval(df, alpha, verbose=False)

Returns the confidence interval of the analysis Arguments: df: dataframe containing the data to analyze alpha: significance level verbose (Optional): bool, prints the regression summary if True

Source code in cluster_experiments/experiment_analysis.py
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
def analysis_confidence_interval(
    self, df: pd.DataFrame, alpha: float, verbose: bool = False
) -> ConfidenceInterval:
    """Returns the confidence interval of the analysis
    Arguments:
        df: dataframe containing the data to analyze
        alpha: significance level
        verbose (Optional): bool, prints the regression summary if True
    """
    results_gee = self.fit_gee(df)
    # Extract the confidence interval for the treatment column
    conf_int_df = results_gee.conf_int(alpha=alpha)
    lower_bound, upper_bound = conf_int_df.loc[self.treatment_col]

    if verbose:
        print(results_gee.summary())

    # Return the confidence interval
    return ConfidenceInterval(lower=lower_bound, upper=upper_bound, alpha=alpha)

analysis_inference_results(df, alpha, verbose=False)

Returns the inference results of the analysis Arguments: df: dataframe containing the data to analyze alpha: significance level verbose (Optional): bool, prints the regression summary if True

Source code in cluster_experiments/experiment_analysis.py
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
def analysis_inference_results(
    self, df: pd.DataFrame, alpha: float, verbose: bool = False
) -> InferenceResults:
    """Returns the inference results of the analysis
    Arguments:
        df: dataframe containing the data to analyze
        alpha: significance level
        verbose (Optional): bool, prints the regression summary if True
    """
    results_gee = self.fit_gee(df)

    std_error = results_gee.bse[self.treatment_col]
    ate = results_gee.params[self.treatment_col]
    p_value = self.pvalue_based_on_hypothesis(results_gee)

    # Extract the confidence interval for the treatment column
    conf_int_df = results_gee.conf_int(alpha=alpha)
    lower_bound, upper_bound = conf_int_df.loc[self.treatment_col]

    if verbose:
        print(results_gee.summary())

    # Return the confidence interval
    return InferenceResults(
        ate=ate,
        p_value=p_value,
        std_error=std_error,
        conf_int=ConfidenceInterval(
            lower=lower_bound, upper=upper_bound, alpha=alpha
        ),
    )

analysis_point_estimate(df, verbose=False)

Returns the point estimate of the analysis Arguments: df: dataframe containing the data to analyze verbose (Optional): bool, prints the regression summary if True

Source code in cluster_experiments/experiment_analysis.py
385
386
387
388
389
390
391
392
def analysis_point_estimate(self, df: pd.DataFrame, verbose: bool = False) -> float:
    """Returns the point estimate of the analysis
    Arguments:
        df: dataframe containing the data to analyze
        verbose (Optional): bool, prints the regression summary if True
    """
    results_gee = self.fit_gee(df)
    return results_gee.params[self.treatment_col]

analysis_pvalue(df, verbose=False)

Returns the p-value of the analysis Arguments: df: dataframe containing the data to analyze verbose (Optional): bool, prints the regression summary if True

Source code in cluster_experiments/experiment_analysis.py
372
373
374
375
376
377
378
379
380
381
382
383
def analysis_pvalue(self, df: pd.DataFrame, verbose: bool = False) -> float:
    """Returns the p-value of the analysis
    Arguments:
        df: dataframe containing the data to analyze
        verbose (Optional): bool, prints the regression summary if True
    """
    results_gee = self.fit_gee(df)
    if verbose:
        print(results_gee.summary())

    p_value = self.pvalue_based_on_hypothesis(results_gee)
    return p_value

analysis_standard_error(df, verbose=False)

Returns the standard error of the analysis Arguments: df: dataframe containing the data to analyze verbose (Optional): bool, prints the regression summary if True

Source code in cluster_experiments/experiment_analysis.py
394
395
396
397
398
399
400
401
def analysis_standard_error(self, df: pd.DataFrame, verbose: bool = False) -> float:
    """Returns the standard error of the analysis
    Arguments:
        df: dataframe containing the data to analyze
        verbose (Optional): bool, prints the regression summary if True
    """
    results_gee = self.fit_gee(df)
    return results_gee.bse[self.treatment_col]

fit_gee(df)

Returns the fitted GEE model

Source code in cluster_experiments/experiment_analysis.py
360
361
362
363
364
365
366
367
368
369
370
def fit_gee(self, df: pd.DataFrame) -> sm.GEE:
    """Returns the fitted GEE model"""
    if self.add_covariate_interaction:
        df = self._add_interaction_covariates(df)
    return sm.GEE.from_formula(
        self.formula,
        data=df,
        groups=self._get_cluster_column(df),
        family=self.fam,
        cov_struct=self.va,
    ).fit()

InferenceResults dataclass

Class to define the structure of complete statistical analysis results.

Source code in cluster_experiments/experiment_analysis.py
28
29
30
31
32
33
34
35
36
37
@dataclass
class InferenceResults:
    """
    Class to define the structure of complete statistical analysis results.
    """

    ate: float
    p_value: float
    std_error: float
    conf_int: ConfidenceInterval

MLMExperimentAnalysis

Bases: ExperimentAnalysis

Class to run Mixed Linear Models clustered analysis

Parameters:

Name Type Description Default
cluster_cols List[str]

list of columns to use as clusters

required
target_col str

name of the column containing the variable to measure

'target'
treatment_col str

name of the column containing the treatment variable

'treatment'
treatment str

name of the treatment to use as the treated group

'B'
covariates Optional[List[str]]

list of columns to use as covariates

None
hypothesis str

one of "two-sided", "less", "greater" indicating the alternative hypothesis

'two-sided'

Usage:

from cluster_experiments.experiment_analysis import MLMExperimentAnalysis
import pandas as pd

df = pd.DataFrame({
    'x': [1, 2, 3, 0, 0, 1],
    'treatment': ["A"] * 3 + ["B"] * 3,
    'cluster': [1] * 6,
})

MLMExperimentAnalysis(
    cluster_cols=['cluster'],
    target_col='x',
).get_pvalue(df)
Source code in cluster_experiments/experiment_analysis.py
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
class MLMExperimentAnalysis(ExperimentAnalysis):
    """
    Class to run Mixed Linear Models clustered analysis

    Arguments:
        cluster_cols: list of columns to use as clusters
        target_col: name of the column containing the variable to measure
        treatment_col: name of the column containing the treatment variable
        treatment: name of the treatment to use as the treated group
        covariates: list of columns to use as covariates
        hypothesis: one of "two-sided", "less", "greater" indicating the alternative hypothesis

    Usage:

    ```python
    from cluster_experiments.experiment_analysis import MLMExperimentAnalysis
    import pandas as pd

    df = pd.DataFrame({
        'x': [1, 2, 3, 0, 0, 1],
        'treatment': ["A"] * 3 + ["B"] * 3,
        'cluster': [1] * 6,
    })

    MLMExperimentAnalysis(
        cluster_cols=['cluster'],
        target_col='x',
    ).get_pvalue(df)
    ```
    """

    def __init__(
        self,
        cluster_cols: List[str],
        target_col: str = "target",
        treatment_col: str = "treatment",
        treatment: str = "B",
        covariates: Optional[List[str]] = None,
        hypothesis: str = "two-sided",
        add_covariate_interaction: bool = False,
    ):
        super().__init__(
            target_col=target_col,
            treatment_col=treatment_col,
            cluster_cols=cluster_cols,
            treatment=treatment,
            covariates=covariates,
            hypothesis=hypothesis,
            add_covariate_interaction=add_covariate_interaction,
        )
        self.re_formula = None
        self.vc_formula = None

    def fit_mlm(self, df: pd.DataFrame) -> sm.MixedLM:
        """Returns the fitted MLM model"""
        if self.add_covariate_interaction:
            df = self._add_interaction_covariates(df)
        return sm.MixedLM.from_formula(
            formula=self.formula,
            data=df,
            groups=self._get_cluster_column(df),
            re_formula=self.re_formula,
            vc_formula=self.vc_formula,
        ).fit()

    def analysis_pvalue(self, df: pd.DataFrame, verbose: bool = False) -> float:
        """Returns the p-value of the analysis
        Arguments:
            df: dataframe containing the data to analyze
            verbose (Optional): bool, prints the regression summary if True
        """
        results_mlm = self.fit_mlm(df)
        if verbose:
            print(results_mlm.summary())

        p_value = self.pvalue_based_on_hypothesis(results_mlm)
        return p_value

    def analysis_point_estimate(self, df: pd.DataFrame, verbose: bool = False) -> float:
        """Returns the point estimate of the analysis
        Arguments:
            df: dataframe containing the data to analyze
            verbose (Optional): bool, prints the regression summary if True
        """
        results_mlm = self.fit_mlm(df)
        return results_mlm.params[self.treatment_col]

    def analysis_standard_error(self, df: pd.DataFrame, verbose: bool = False) -> float:
        """Returns the standard error of the analysis
        Arguments:
            df: dataframe containing the data to analyze
            verbose (Optional): bool, prints the regression summary if True
        """
        results_mlm = self.fit_mlm(df)
        return results_mlm.bse[self.treatment_col]

analysis_point_estimate(df, verbose=False)

Returns the point estimate of the analysis Arguments: df: dataframe containing the data to analyze verbose (Optional): bool, prints the regression summary if True

Source code in cluster_experiments/experiment_analysis.py
982
983
984
985
986
987
988
989
def analysis_point_estimate(self, df: pd.DataFrame, verbose: bool = False) -> float:
    """Returns the point estimate of the analysis
    Arguments:
        df: dataframe containing the data to analyze
        verbose (Optional): bool, prints the regression summary if True
    """
    results_mlm = self.fit_mlm(df)
    return results_mlm.params[self.treatment_col]

analysis_pvalue(df, verbose=False)

Returns the p-value of the analysis Arguments: df: dataframe containing the data to analyze verbose (Optional): bool, prints the regression summary if True

Source code in cluster_experiments/experiment_analysis.py
969
970
971
972
973
974
975
976
977
978
979
980
def analysis_pvalue(self, df: pd.DataFrame, verbose: bool = False) -> float:
    """Returns the p-value of the analysis
    Arguments:
        df: dataframe containing the data to analyze
        verbose (Optional): bool, prints the regression summary if True
    """
    results_mlm = self.fit_mlm(df)
    if verbose:
        print(results_mlm.summary())

    p_value = self.pvalue_based_on_hypothesis(results_mlm)
    return p_value

analysis_standard_error(df, verbose=False)

Returns the standard error of the analysis Arguments: df: dataframe containing the data to analyze verbose (Optional): bool, prints the regression summary if True

Source code in cluster_experiments/experiment_analysis.py
991
992
993
994
995
996
997
998
def analysis_standard_error(self, df: pd.DataFrame, verbose: bool = False) -> float:
    """Returns the standard error of the analysis
    Arguments:
        df: dataframe containing the data to analyze
        verbose (Optional): bool, prints the regression summary if True
    """
    results_mlm = self.fit_mlm(df)
    return results_mlm.bse[self.treatment_col]

fit_mlm(df)

Returns the fitted MLM model

Source code in cluster_experiments/experiment_analysis.py
957
958
959
960
961
962
963
964
965
966
967
def fit_mlm(self, df: pd.DataFrame) -> sm.MixedLM:
    """Returns the fitted MLM model"""
    if self.add_covariate_interaction:
        df = self._add_interaction_covariates(df)
    return sm.MixedLM.from_formula(
        formula=self.formula,
        data=df,
        groups=self._get_cluster_column(df),
        re_formula=self.re_formula,
        vc_formula=self.vc_formula,
    ).fit()

OLSAnalysis

Bases: ExperimentAnalysis

Class to run OLS analysis

Parameters:

Name Type Description Default
target_col str

name of the column containing the variable to measure

'target'
treatment_col str

name of the column containing the treatment variable

'treatment'
treatment str

name of the treatment to use as the treated group

'B'
covariates Optional[List[str]]

list of columns to use as covariates

None
hypothesis str

one of "two-sided", "less", "greater" indicating the alternative hypothesis

'two-sided'
cov_type Optional[Literal['nonrobust', 'fixed scale', 'HC0', 'HC1', 'HC2', 'HC3', 'HAC', 'hac-panel', 'hac-groupsum', 'cluster']]

one of "nonrobust", "fixed scale", "HC0", "HC1", "HC2", "HC3", "HAC", "hac-panel", "hac-groupsum", "cluster"

None

Usage:

from cluster_experiments.experiment_analysis import OLSAnalysis
import pandas as pd

df = pd.DataFrame({
    'x': [1, 2, 3, 0, 0, 1],
    'treatment': ["A"] * 3 + ["B"] * 3,
})

OLSAnalysis(
    target_col='x',
).get_pvalue(df)
Source code in cluster_experiments/experiment_analysis.py
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
class OLSAnalysis(ExperimentAnalysis):
    """
    Class to run OLS analysis

    Arguments:
        target_col: name of the column containing the variable to measure
        treatment_col: name of the column containing the treatment variable
        treatment: name of the treatment to use as the treated group
        covariates: list of columns to use as covariates
        hypothesis: one of "two-sided", "less", "greater" indicating the alternative hypothesis
        cov_type: one of "nonrobust", "fixed scale", "HC0", "HC1", "HC2", "HC3", "HAC", "hac-panel", "hac-groupsum", "cluster"

    Usage:

    ```python
    from cluster_experiments.experiment_analysis import OLSAnalysis
    import pandas as pd

    df = pd.DataFrame({
        'x': [1, 2, 3, 0, 0, 1],
        'treatment': ["A"] * 3 + ["B"] * 3,
    })

    OLSAnalysis(
        target_col='x',
    ).get_pvalue(df)
    ```
    """

    def __init__(
        self,
        target_col: str = "target",
        treatment_col: str = "treatment",
        treatment: str = "B",
        covariates: Optional[List[str]] = None,
        hypothesis: str = "two-sided",
        cov_type: Optional[
            Literal[
                "nonrobust",
                "fixed scale",
                "HC0",
                "HC1",
                "HC2",
                "HC3",
                "HAC",
                "hac-panel",
                "hac-groupsum",
                "cluster",
            ]
        ] = None,
        add_covariate_interaction: bool = False,
    ):
        self.target_col = target_col
        self.treatment = treatment
        self.treatment_col = treatment_col
        self.covariates = covariates or []
        self.hypothesis = hypothesis
        self.cov_type: Literal[
            "nonrobust",
            "fixed scale",
            "HC0",
            "HC1",
            "HC2",
            "HC3",
            "HAC",
            "hac-panel",
            "hac-groupsum",
            "cluster",
        ] = (
            "HC3" if cov_type is None else cov_type
        )
        self.add_covariate_interaction = add_covariate_interaction

    def fit_ols(self, df: pd.DataFrame):
        """Returns the fitted OLS model"""
        if self.add_covariate_interaction:
            df = self._add_interaction_covariates(df)
        return sm.OLS.from_formula(self.formula, data=df).fit(cov_type=self.cov_type)

    def analysis_pvalue(self, df: pd.DataFrame, verbose: bool = False) -> float:
        """Returns the p-value of the analysis
        Arguments:
            df: dataframe containing the data to analyze
            verbose (Optional): bool, prints the regression summary if True
        """
        results_ols = self.fit_ols(df=df)
        if verbose:
            print(results_ols.summary())

        p_value = self.pvalue_based_on_hypothesis(results_ols)
        return p_value

    def analysis_point_estimate(self, df: pd.DataFrame, verbose: bool = False) -> float:
        """Returns the point estimate of the analysis
        Arguments:
            df: dataframe containing the data to analyze
            verbose (Optional): bool, prints the regression summary if True
        """
        results_ols = self.fit_ols(df=df)
        return results_ols.params[self.treatment_col]

    def analysis_standard_error(self, df: pd.DataFrame, verbose: bool = False) -> float:
        """Returns the standard error of the analysis
        Arguments:
            df: dataframe containing the data to analyze
            verbose (Optional): bool, prints the regression summary if True
        """
        results_ols = self.fit_ols(df=df)
        return results_ols.bse[self.treatment_col]

    def analysis_confidence_interval(
        self, df: pd.DataFrame, alpha: float, verbose: bool = False
    ) -> ConfidenceInterval:
        """Returns the confidence interval of the analysis
        Arguments:
            df: dataframe containing the data to analyze
            alpha: significance level
            verbose (Optional): bool, prints the regression summary if True
        """
        results_ols = self.fit_ols(df)
        # Extract the confidence interval for the treatment column
        conf_int_df = results_ols.conf_int(alpha=alpha)
        lower_bound, upper_bound = conf_int_df.loc[self.treatment_col]

        if verbose:
            print(results_ols.summary())

        # Return the confidence interval
        return ConfidenceInterval(lower=lower_bound, upper=upper_bound, alpha=alpha)

    def analysis_inference_results(
        self, df: pd.DataFrame, alpha: float, verbose: bool = False
    ) -> InferenceResults:
        """Returns the inference results of the analysis
        Arguments:
            df: dataframe containing the data to analyze
            alpha: significance level
            verbose (Optional): bool, prints the regression summary if True
        """
        results_ols = self.fit_ols(df)

        std_error = results_ols.bse[self.treatment_col]
        ate = results_ols.params[self.treatment_col]
        p_value = self.pvalue_based_on_hypothesis(results_ols)

        # Extract the confidence interval for the treatment column
        conf_int_df = results_ols.conf_int(alpha=alpha)
        lower_bound, upper_bound = conf_int_df.loc[self.treatment_col]

        if verbose:
            print(results_ols.summary())

        # Return the confidence interval
        return InferenceResults(
            ate=ate,
            p_value=p_value,
            std_error=std_error,
            conf_int=ConfidenceInterval(
                lower=lower_bound, upper=upper_bound, alpha=alpha
            ),
        )

    @classmethod
    def from_config(cls, config):
        """Creates an OLSAnalysis object from a PowerConfig object"""
        return cls(
            target_col=config.target_col,
            treatment_col=config.treatment_col,
            treatment=config.treatment,
            covariates=config.covariates,
            hypothesis=config.hypothesis,
            cov_type=config.cov_type,
            add_covariate_interaction=config.add_covariate_interaction,
        )

analysis_confidence_interval(df, alpha, verbose=False)

Returns the confidence interval of the analysis Arguments: df: dataframe containing the data to analyze alpha: significance level verbose (Optional): bool, prints the regression summary if True

Source code in cluster_experiments/experiment_analysis.py
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
def analysis_confidence_interval(
    self, df: pd.DataFrame, alpha: float, verbose: bool = False
) -> ConfidenceInterval:
    """Returns the confidence interval of the analysis
    Arguments:
        df: dataframe containing the data to analyze
        alpha: significance level
        verbose (Optional): bool, prints the regression summary if True
    """
    results_ols = self.fit_ols(df)
    # Extract the confidence interval for the treatment column
    conf_int_df = results_ols.conf_int(alpha=alpha)
    lower_bound, upper_bound = conf_int_df.loc[self.treatment_col]

    if verbose:
        print(results_ols.summary())

    # Return the confidence interval
    return ConfidenceInterval(lower=lower_bound, upper=upper_bound, alpha=alpha)

analysis_inference_results(df, alpha, verbose=False)

Returns the inference results of the analysis Arguments: df: dataframe containing the data to analyze alpha: significance level verbose (Optional): bool, prints the regression summary if True

Source code in cluster_experiments/experiment_analysis.py
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
def analysis_inference_results(
    self, df: pd.DataFrame, alpha: float, verbose: bool = False
) -> InferenceResults:
    """Returns the inference results of the analysis
    Arguments:
        df: dataframe containing the data to analyze
        alpha: significance level
        verbose (Optional): bool, prints the regression summary if True
    """
    results_ols = self.fit_ols(df)

    std_error = results_ols.bse[self.treatment_col]
    ate = results_ols.params[self.treatment_col]
    p_value = self.pvalue_based_on_hypothesis(results_ols)

    # Extract the confidence interval for the treatment column
    conf_int_df = results_ols.conf_int(alpha=alpha)
    lower_bound, upper_bound = conf_int_df.loc[self.treatment_col]

    if verbose:
        print(results_ols.summary())

    # Return the confidence interval
    return InferenceResults(
        ate=ate,
        p_value=p_value,
        std_error=std_error,
        conf_int=ConfidenceInterval(
            lower=lower_bound, upper=upper_bound, alpha=alpha
        ),
    )

analysis_point_estimate(df, verbose=False)

Returns the point estimate of the analysis Arguments: df: dataframe containing the data to analyze verbose (Optional): bool, prints the regression summary if True

Source code in cluster_experiments/experiment_analysis.py
744
745
746
747
748
749
750
751
def analysis_point_estimate(self, df: pd.DataFrame, verbose: bool = False) -> float:
    """Returns the point estimate of the analysis
    Arguments:
        df: dataframe containing the data to analyze
        verbose (Optional): bool, prints the regression summary if True
    """
    results_ols = self.fit_ols(df=df)
    return results_ols.params[self.treatment_col]

analysis_pvalue(df, verbose=False)

Returns the p-value of the analysis Arguments: df: dataframe containing the data to analyze verbose (Optional): bool, prints the regression summary if True

Source code in cluster_experiments/experiment_analysis.py
731
732
733
734
735
736
737
738
739
740
741
742
def analysis_pvalue(self, df: pd.DataFrame, verbose: bool = False) -> float:
    """Returns the p-value of the analysis
    Arguments:
        df: dataframe containing the data to analyze
        verbose (Optional): bool, prints the regression summary if True
    """
    results_ols = self.fit_ols(df=df)
    if verbose:
        print(results_ols.summary())

    p_value = self.pvalue_based_on_hypothesis(results_ols)
    return p_value

analysis_standard_error(df, verbose=False)

Returns the standard error of the analysis Arguments: df: dataframe containing the data to analyze verbose (Optional): bool, prints the regression summary if True

Source code in cluster_experiments/experiment_analysis.py
753
754
755
756
757
758
759
760
def analysis_standard_error(self, df: pd.DataFrame, verbose: bool = False) -> float:
    """Returns the standard error of the analysis
    Arguments:
        df: dataframe containing the data to analyze
        verbose (Optional): bool, prints the regression summary if True
    """
    results_ols = self.fit_ols(df=df)
    return results_ols.bse[self.treatment_col]

fit_ols(df)

Returns the fitted OLS model

Source code in cluster_experiments/experiment_analysis.py
725
726
727
728
729
def fit_ols(self, df: pd.DataFrame):
    """Returns the fitted OLS model"""
    if self.add_covariate_interaction:
        df = self._add_interaction_covariates(df)
    return sm.OLS.from_formula(self.formula, data=df).fit(cov_type=self.cov_type)

from_config(config) classmethod

Creates an OLSAnalysis object from a PowerConfig object

Source code in cluster_experiments/experiment_analysis.py
814
815
816
817
818
819
820
821
822
823
824
825
@classmethod
def from_config(cls, config):
    """Creates an OLSAnalysis object from a PowerConfig object"""
    return cls(
        target_col=config.target_col,
        treatment_col=config.treatment_col,
        treatment=config.treatment,
        covariates=config.covariates,
        hypothesis=config.hypothesis,
        cov_type=config.cov_type,
        add_covariate_interaction=config.add_covariate_interaction,
    )

PairedTTestClusteredAnalysis

Bases: ExperimentAnalysis

Class to run paired T-test analysis on aggregated data

Parameters:

Name Type Description Default
cluster_cols List[str]

list of columns to use as clusters

required
target_col str

name of the column containing the variable to measure

'target'
treatment_col str

name of the column containing the treatment variable

'treatment'
treatment str

name of the treatment to use as the treated group

'B'
strata_cols List[str]

list of index columns for paired t test. Should be a subset or equal to cluster_cols

required
hypothesis str

one of "two-sided", "less", "greater" indicating the alternative hypothesis

'two-sided'

Usage:

from cluster_experiments.experiment_analysis import PairedTTestClusteredAnalysis
import pandas as pd

df = pd.DataFrame({
    'x': [1, 2, 3, 4, 0, 0, 1, 1],
    'treatment': ["A", "B", "A", "B"] * 2,
    'cluster': [1, 2, 3, 4, 1, 2, 3, 4],
})

PairedTTestClusteredAnalysis(
    cluster_cols=['cluster'],
    strata_cols=['cluster'],
    target_col='x',
).get_pvalue(df)
Source code in cluster_experiments/experiment_analysis.py
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
class PairedTTestClusteredAnalysis(ExperimentAnalysis):
    """
    Class to run paired T-test analysis on aggregated data

    Arguments:
        cluster_cols: list of columns to use as clusters
        target_col: name of the column containing the variable to measure
        treatment_col: name of the column containing the treatment variable
        treatment: name of the treatment to use as the treated group
        strata_cols: list of index columns for paired t test. Should be a subset or equal to cluster_cols
        hypothesis: one of "two-sided", "less", "greater" indicating the alternative hypothesis

    Usage:

    ```python
    from cluster_experiments.experiment_analysis import PairedTTestClusteredAnalysis
    import pandas as pd

    df = pd.DataFrame({
        'x': [1, 2, 3, 4, 0, 0, 1, 1],
        'treatment': ["A", "B", "A", "B"] * 2,
        'cluster': [1, 2, 3, 4, 1, 2, 3, 4],
    })

    PairedTTestClusteredAnalysis(
        cluster_cols=['cluster'],
        strata_cols=['cluster'],
        target_col='x',
    ).get_pvalue(df)
    ```
    """

    def __init__(
        self,
        cluster_cols: List[str],
        strata_cols: List[str],
        target_col: str = "target",
        treatment_col: str = "treatment",
        treatment: str = "B",
        hypothesis: str = "two-sided",
    ):
        self.strata_cols = strata_cols
        self.target_col = target_col
        self.treatment = treatment
        self.treatment_col = treatment_col
        self.cluster_cols = cluster_cols
        self.hypothesis = hypothesis

    def _preprocessing(self, df: pd.DataFrame, verbose: bool = False) -> pd.DataFrame:
        df_grouped = df.groupby(
            self.cluster_cols + [self.treatment_col], as_index=False
        )[self.target_col].mean()

        n_control = df_grouped[self.treatment_col].value_counts()[0]
        n_treatment = df_grouped[self.treatment_col].value_counts()[1]

        if n_control != n_treatment:
            logging.warning(
                f"groups don't have same number of observations, {n_treatment =} and  {n_control =}"
            )

        assert all(
            [x in self.cluster_cols for x in self.strata_cols]
        ), f"strata should be a subset or equal to cluster_cols ({self.cluster_cols = }, {self.strata_cols = })"

        df_pivot = df_grouped.pivot_table(
            columns=self.treatment_col,
            index=self.strata_cols,
            values=self.target_col,
        )

        if df_pivot.isna().sum().sum() > 0:
            logging.warning(
                f"There are missing pairs for some clusters, removing the lonely ones: {df_pivot[df_pivot.isna().any(axis=1)].to_dict()}"
            )

        if verbose:
            print(f"performing paired t test in this data \n {df_pivot} \n")

        df_pivot = df_pivot.dropna()

        return df_pivot

    def analysis_pvalue(self, df: pd.DataFrame, verbose: bool = False) -> float:
        """Returns the p-value of the analysis
        Arguments:
            df: dataframe containing the data to analyze
            verbose (Optional): bool, prints the extra info if True
        """
        assert (
            type(self.cluster_cols) is list
        ), "cluster_cols needs to be a list of strings (even with one element)"
        assert (
            type(self.strata_cols) is list
        ), "strata_cols needs to be a list of strings (even with one element)"

        df_pivot = self._preprocessing(df=df)

        t_test_results = ttest_rel(
            df_pivot.iloc[:, 0], df_pivot.iloc[:, 1], alternative=self.hypothesis
        )

        if verbose:
            print(f"paired t test results: \n {t_test_results} \n")

        return t_test_results.pvalue

    @classmethod
    def from_config(cls, config):
        """Creates a PairedTTestClusteredAnalysis object from a PowerConfig object"""
        return cls(
            cluster_cols=config.cluster_cols,
            target_col=config.target_col,
            treatment_col=config.treatment_col,
            treatment=config.treatment,
            strata_cols=config.strata_cols,
            hypothesis=config.hypothesis,
        )

analysis_pvalue(df, verbose=False)

Returns the p-value of the analysis Arguments: df: dataframe containing the data to analyze verbose (Optional): bool, prints the extra info if True

Source code in cluster_experiments/experiment_analysis.py
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
def analysis_pvalue(self, df: pd.DataFrame, verbose: bool = False) -> float:
    """Returns the p-value of the analysis
    Arguments:
        df: dataframe containing the data to analyze
        verbose (Optional): bool, prints the extra info if True
    """
    assert (
        type(self.cluster_cols) is list
    ), "cluster_cols needs to be a list of strings (even with one element)"
    assert (
        type(self.strata_cols) is list
    ), "strata_cols needs to be a list of strings (even with one element)"

    df_pivot = self._preprocessing(df=df)

    t_test_results = ttest_rel(
        df_pivot.iloc[:, 0], df_pivot.iloc[:, 1], alternative=self.hypothesis
    )

    if verbose:
        print(f"paired t test results: \n {t_test_results} \n")

    return t_test_results.pvalue

from_config(config) classmethod

Creates a PairedTTestClusteredAnalysis object from a PowerConfig object

Source code in cluster_experiments/experiment_analysis.py
639
640
641
642
643
644
645
646
647
648
649
@classmethod
def from_config(cls, config):
    """Creates a PairedTTestClusteredAnalysis object from a PowerConfig object"""
    return cls(
        cluster_cols=config.cluster_cols,
        target_col=config.target_col,
        treatment_col=config.treatment_col,
        treatment=config.treatment,
        strata_cols=config.strata_cols,
        hypothesis=config.hypothesis,
    )

SyntheticControlAnalysis

Bases: ExperimentAnalysis

Class to run Synthetic control analysis. It expects only one treatment cluster.

Arguments:

target_col (str): The name of the column containing the variable to measure.
treatment_col (str): The name of the column containing the treatment variable.
treatment (str): The name of the treatment to use as the treated group.
cluster_cols (list): A list of columns to use as clusters.
hypothesis (str): One of "two-sided", "less", "greater" indicating the hypothesis.
time_col (str): The name of the column containing the time data.
intervention_date (str): The date when the intervention occurred.

Usage:

from cluster_experiments.experiment_analysis import SyntheticControlAnalysis
import pandas as pd
import numpy as np
from itertools import product

dates = pd.date_range("2022-01-01", "2022-01-31", freq="d")

users = [f"User {i}" for i in range(10)]

# Create a combination of each date with each user
combinations = list(product(users, dates))

target_values = np.random.normal(0, 1, size=len(combinations))

df = pd.DataFrame(combinations, columns=["user", "date"])
df["target"] = target_values

df["treatment"] = "A"
df.loc[(df["user"] == "User 5"), "treatment"] = "B"

SyntheticControlAnalysis(
    cluster_cols=["user"], time_col="date", intervention_date="2022-01-15"
).get_pvalue(df)
Source code in cluster_experiments/experiment_analysis.py
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
class SyntheticControlAnalysis(ExperimentAnalysis):
    """
    Class to run Synthetic control analysis. It expects only one treatment cluster.

    Arguments:

        target_col (str): The name of the column containing the variable to measure.
        treatment_col (str): The name of the column containing the treatment variable.
        treatment (str): The name of the treatment to use as the treated group.
        cluster_cols (list): A list of columns to use as clusters.
        hypothesis (str): One of "two-sided", "less", "greater" indicating the hypothesis.
        time_col (str): The name of the column containing the time data.
        intervention_date (str): The date when the intervention occurred.
    Usage:

    ```python
    from cluster_experiments.experiment_analysis import SyntheticControlAnalysis
    import pandas as pd
    import numpy as np
    from itertools import product

    dates = pd.date_range("2022-01-01", "2022-01-31", freq="d")

    users = [f"User {i}" for i in range(10)]

    # Create a combination of each date with each user
    combinations = list(product(users, dates))

    target_values = np.random.normal(0, 1, size=len(combinations))

    df = pd.DataFrame(combinations, columns=["user", "date"])
    df["target"] = target_values

    df["treatment"] = "A"
    df.loc[(df["user"] == "User 5"), "treatment"] = "B"

    SyntheticControlAnalysis(
        cluster_cols=["user"], time_col="date", intervention_date="2022-01-15"
    ).get_pvalue(df)

    ```
    """

    def __init__(
        self,
        intervention_date: str,
        cluster_cols: List[str],
        target_col: str = "target",
        treatment_col: str = "treatment",
        treatment: str = "B",
        hypothesis: str = "two-sided",
        time_col: str = "date",
    ):
        super().__init__(
            treatment=treatment,
            target_col=target_col,
            treatment_col=treatment_col,
            hypothesis=hypothesis,
            cluster_cols=cluster_cols,
        )

        self.time_col = time_col
        self.intervention_date = intervention_date

        if time_col in cluster_cols:
            raise ValueError("time columns should not be in cluster columns")

    def _fit(self, pre_experiment_df: pd.DataFrame, verbose: bool) -> np.ndarray:
        """Returns the weight of each donor"""

        if not any(pre_experiment_df[self.treatment_col] == 1):
            raise ValueError("No treatment unit found in the data.")

        X = (
            pre_experiment_df.query(f"{self.treatment_col} == 0")
            .pivot(index=self.cluster_cols, columns=self.time_col)[self.target_col]
            .T
        )

        y = (
            pre_experiment_df.query(f"{self.treatment_col} == 1")
            .pivot(index=self.cluster_cols, columns=self.time_col)[self.target_col]
            .T.iloc[:, 0]
        )

        weights = get_w(X, y, verbose)

        return weights

    def _predict(
        self, df: pd.DataFrame, weights: np.ndarray, treatment_cluster: str
    ) -> pd.DataFrame:
        """
        This method adds a column with the synthetic results and filter only the treatment unit.

        First, it calculates the weights of each donor in the control group using the `fit_synthetic` method.
        It then uses these weights to create a synthetic control group that closely matches the treatment unit before the intervention.
        The synthetic control group is added to the treatment unit in the dataframe.
        """
        synthetic = (
            df[self._get_cluster_column(df) != treatment_cluster]
            .pivot(index=self.time_col, columns=self.cluster_cols)[self.target_col]
            .values.dot(weights)
        )

        # add synthetic to treatment cluster
        return df[self._get_cluster_column(df) == treatment_cluster].assign(
            synthetic=synthetic
        )

    def fit_predict_synthetic(
        self,
        df: pd.DataFrame,
        pre_experiment_df: pd.DataFrame,
        treatment_cluster: str,
        verbose: bool = False,
    ) -> pd.DataFrame:
        """
        Fit the synthetic control model and predict the results for the treatment cluster.
        Args:
            df: The dataframe containing the data after the intervention.
            pre_experiment_df: The dataframe containing the data before the intervention.
            treatment_cluster: The name of the treatment cluster.
            verbose: If True, print the status of the optimization of weights.

        Returns:
            The dataframe with the synthetic results added to the treatment cluster.
        """
        weights = self._fit(pre_experiment_df=pre_experiment_df, verbose=verbose)

        prediction = self._predict(
            df=df, weights=weights, treatment_cluster=treatment_cluster
        )
        return prediction

    def pvalue_based_on_hypothesis(
        self, ate: np.float64, avg_effects: Dict[str, float]
    ) -> float:
        """
        Returns the p-value of the analysis.
        1. Count how many times the average effect is greater than the real treatment unit
        2. Average it with the number of units. The result is the p-value using Fisher permutation exact test.
        """

        avg_effects = list(avg_effects.values())

        if HypothesisEntries(self.hypothesis) == HypothesisEntries.LESS:
            return np.mean(avg_effects < ate)
        if HypothesisEntries(self.hypothesis) == HypothesisEntries.GREATER:
            return np.mean(avg_effects > ate)
        if HypothesisEntries(self.hypothesis) == HypothesisEntries.TWO_SIDED:
            avg_effects = np.abs(avg_effects)
            return np.mean(avg_effects > ate)

        raise ValueError(f"{self.hypothesis} is not a valid HypothesisEntries")

    def _get_treatment_cluster(self, df: pd.DataFrame) -> str:
        """Returns the first treatment cluster. The current implementation of Synthetic Control only accepts one treatment cluster.
        This will be left inside Synthetic class because it doesn't apply for other analyses
        """
        treatment_df = df[df[self.treatment_col] == 1]
        treatment_cluster = self._get_cluster_column(treatment_df).unique()[0]
        return treatment_cluster

    def analysis_pvalue(self, df: pd.DataFrame, verbose: bool = False) -> float:
        """
        Returns the p-value of the analysis.
        1. Calculate the average effect after intervention for each unit.
        2. Count how many times the average effect is greater than the real treatment unit
        3. Average it with the number of units. The result is the p-value using Fisher permutation test
        """

        clusters = self._get_cluster_column(df).unique()
        treatment_cluster = self._get_treatment_cluster(df)

        synthetic_donors = {
            cluster: self.analysis_point_estimate(
                treatment_cluster=cluster,
                df=df,
                verbose=verbose,
            )
            for cluster in clusters
        }

        ate = synthetic_donors[treatment_cluster]
        synthetic_donors.pop(treatment_cluster)

        return self.pvalue_based_on_hypothesis(ate=ate, avg_effects=synthetic_donors)

    def analysis_point_estimate(
        self,
        df: pd.DataFrame,
        treatment_cluster: Optional[str] = None,
        verbose: bool = False,
    ):
        """
        Calculate the point estimate for the treatment effect for a specified cluster by averaging across the time windows.
        """
        df, pre_experiment_df = self._split_pre_experiment_df(df)

        if treatment_cluster is None:
            treatment_cluster = self._get_treatment_cluster(df)

        df = self.fit_predict_synthetic(
            df, pre_experiment_df, treatment_cluster, verbose=verbose
        )

        df["effect"] = df[self.target_col] - df["synthetic"]
        avg_effect = df["effect"].mean()
        return avg_effect

    def _split_pre_experiment_df(self, df: pd.DataFrame):
        """Split the dataframe into pre-experiment and experiment dataframes"""
        pre_experiment_df = df[(df[self.time_col] <= self.intervention_date)]
        df = df[(df[self.time_col] > self.intervention_date)]
        return df, pre_experiment_df

analysis_point_estimate(df, treatment_cluster=None, verbose=False)

Calculate the point estimate for the treatment effect for a specified cluster by averaging across the time windows.

Source code in cluster_experiments/experiment_analysis.py
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
def analysis_point_estimate(
    self,
    df: pd.DataFrame,
    treatment_cluster: Optional[str] = None,
    verbose: bool = False,
):
    """
    Calculate the point estimate for the treatment effect for a specified cluster by averaging across the time windows.
    """
    df, pre_experiment_df = self._split_pre_experiment_df(df)

    if treatment_cluster is None:
        treatment_cluster = self._get_treatment_cluster(df)

    df = self.fit_predict_synthetic(
        df, pre_experiment_df, treatment_cluster, verbose=verbose
    )

    df["effect"] = df[self.target_col] - df["synthetic"]
    avg_effect = df["effect"].mean()
    return avg_effect

analysis_pvalue(df, verbose=False)

Returns the p-value of the analysis. 1. Calculate the average effect after intervention for each unit. 2. Count how many times the average effect is greater than the real treatment unit 3. Average it with the number of units. The result is the p-value using Fisher permutation test

Source code in cluster_experiments/experiment_analysis.py
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
def analysis_pvalue(self, df: pd.DataFrame, verbose: bool = False) -> float:
    """
    Returns the p-value of the analysis.
    1. Calculate the average effect after intervention for each unit.
    2. Count how many times the average effect is greater than the real treatment unit
    3. Average it with the number of units. The result is the p-value using Fisher permutation test
    """

    clusters = self._get_cluster_column(df).unique()
    treatment_cluster = self._get_treatment_cluster(df)

    synthetic_donors = {
        cluster: self.analysis_point_estimate(
            treatment_cluster=cluster,
            df=df,
            verbose=verbose,
        )
        for cluster in clusters
    }

    ate = synthetic_donors[treatment_cluster]
    synthetic_donors.pop(treatment_cluster)

    return self.pvalue_based_on_hypothesis(ate=ate, avg_effects=synthetic_donors)

fit_predict_synthetic(df, pre_experiment_df, treatment_cluster, verbose=False)

Fit the synthetic control model and predict the results for the treatment cluster. Args: df: The dataframe containing the data after the intervention. pre_experiment_df: The dataframe containing the data before the intervention. treatment_cluster: The name of the treatment cluster. verbose: If True, print the status of the optimization of weights.

Returns:

Type Description
DataFrame

The dataframe with the synthetic results added to the treatment cluster.

Source code in cluster_experiments/experiment_analysis.py
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
def fit_predict_synthetic(
    self,
    df: pd.DataFrame,
    pre_experiment_df: pd.DataFrame,
    treatment_cluster: str,
    verbose: bool = False,
) -> pd.DataFrame:
    """
    Fit the synthetic control model and predict the results for the treatment cluster.
    Args:
        df: The dataframe containing the data after the intervention.
        pre_experiment_df: The dataframe containing the data before the intervention.
        treatment_cluster: The name of the treatment cluster.
        verbose: If True, print the status of the optimization of weights.

    Returns:
        The dataframe with the synthetic results added to the treatment cluster.
    """
    weights = self._fit(pre_experiment_df=pre_experiment_df, verbose=verbose)

    prediction = self._predict(
        df=df, weights=weights, treatment_cluster=treatment_cluster
    )
    return prediction

pvalue_based_on_hypothesis(ate, avg_effects)

Returns the p-value of the analysis. 1. Count how many times the average effect is greater than the real treatment unit 2. Average it with the number of units. The result is the p-value using Fisher permutation exact test.

Source code in cluster_experiments/experiment_analysis.py
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
def pvalue_based_on_hypothesis(
    self, ate: np.float64, avg_effects: Dict[str, float]
) -> float:
    """
    Returns the p-value of the analysis.
    1. Count how many times the average effect is greater than the real treatment unit
    2. Average it with the number of units. The result is the p-value using Fisher permutation exact test.
    """

    avg_effects = list(avg_effects.values())

    if HypothesisEntries(self.hypothesis) == HypothesisEntries.LESS:
        return np.mean(avg_effects < ate)
    if HypothesisEntries(self.hypothesis) == HypothesisEntries.GREATER:
        return np.mean(avg_effects > ate)
    if HypothesisEntries(self.hypothesis) == HypothesisEntries.TWO_SIDED:
        avg_effects = np.abs(avg_effects)
        return np.mean(avg_effects > ate)

    raise ValueError(f"{self.hypothesis} is not a valid HypothesisEntries")

TTestClusteredAnalysis

Bases: ExperimentAnalysis

Class to run T-test analysis on aggregated data

Parameters:

Name Type Description Default
cluster_cols List[str]

list of columns to use as clusters

required
target_col str

name of the column containing the variable to measure

'target'
treatment_col str

name of the column containing the treatment variable

'treatment'
treatment str

name of the treatment to use as the treated group

'B'
hypothesis str

one of "two-sided", "less", "greater" indicating the alternative hypothesis

'two-sided'

Usage:

from cluster_experiments.experiment_analysis import TTestClusteredAnalysis
import pandas as pd

df = pd.DataFrame({
    'x': [1, 2, 3, 4, 0, 0, 1, 1],
    'treatment': ["A", "B", "A", "B"] * 2,
    'cluster': [1, 2, 3, 4, 1, 2, 3, 4],
})

TTestClusteredAnalysis(
    cluster_cols=['cluster'],
    target_col='x',
).get_pvalue(df)
Source code in cluster_experiments/experiment_analysis.py
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
class TTestClusteredAnalysis(ExperimentAnalysis):
    """
    Class to run T-test analysis on aggregated data

    Arguments:
        cluster_cols: list of columns to use as clusters
        target_col: name of the column containing the variable to measure
        treatment_col: name of the column containing the treatment variable
        treatment: name of the treatment to use as the treated group
        hypothesis: one of "two-sided", "less", "greater" indicating the alternative hypothesis

    Usage:

    ```python
    from cluster_experiments.experiment_analysis import TTestClusteredAnalysis
    import pandas as pd

    df = pd.DataFrame({
        'x': [1, 2, 3, 4, 0, 0, 1, 1],
        'treatment': ["A", "B", "A", "B"] * 2,
        'cluster': [1, 2, 3, 4, 1, 2, 3, 4],
    })

    TTestClusteredAnalysis(
        cluster_cols=['cluster'],
        target_col='x',
    ).get_pvalue(df)
    ```
    """

    def __init__(
        self,
        cluster_cols: List[str],
        target_col: str = "target",
        treatment_col: str = "treatment",
        treatment: str = "B",
        hypothesis: str = "two-sided",
    ):
        self.target_col = target_col
        self.treatment = treatment
        self.treatment_col = treatment_col
        self.cluster_cols = cluster_cols
        self.hypothesis = hypothesis

    def analysis_pvalue(self, df: pd.DataFrame, verbose: bool = False) -> float:
        """Returns the p-value of the analysis
        Arguments:
            df: dataframe containing the data to analyze
            verbose (Optional): bool, prints the regression summary if True
        """

        df_grouped = df.groupby(
            self.cluster_cols + [self.treatment_col], as_index=False
        )[self.target_col].mean()

        treatment_data = df_grouped.query(f"{self.treatment_col} == 1")[self.target_col]
        control_data = df_grouped.query(f"{self.treatment_col} == 0")[self.target_col]
        assert len(treatment_data), "treatment data should have more than 1 cluster"
        assert len(control_data), "control data should have more than 1 cluster"
        t_test_results = ttest_ind(
            treatment_data, control_data, equal_var=False, alternative=self.hypothesis
        )
        return t_test_results.pvalue

    @classmethod
    def from_config(cls, config):
        """Creates a TTestClusteredAnalysis object from a PowerConfig object"""
        return cls(
            cluster_cols=config.cluster_cols,
            target_col=config.target_col,
            treatment_col=config.treatment_col,
            treatment=config.treatment,
            hypothesis=config.hypothesis,
        )

analysis_pvalue(df, verbose=False)

Returns the p-value of the analysis Arguments: df: dataframe containing the data to analyze verbose (Optional): bool, prints the regression summary if True

Source code in cluster_experiments/experiment_analysis.py
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
def analysis_pvalue(self, df: pd.DataFrame, verbose: bool = False) -> float:
    """Returns the p-value of the analysis
    Arguments:
        df: dataframe containing the data to analyze
        verbose (Optional): bool, prints the regression summary if True
    """

    df_grouped = df.groupby(
        self.cluster_cols + [self.treatment_col], as_index=False
    )[self.target_col].mean()

    treatment_data = df_grouped.query(f"{self.treatment_col} == 1")[self.target_col]
    control_data = df_grouped.query(f"{self.treatment_col} == 0")[self.target_col]
    assert len(treatment_data), "treatment data should have more than 1 cluster"
    assert len(control_data), "control data should have more than 1 cluster"
    t_test_results = ttest_ind(
        treatment_data, control_data, equal_var=False, alternative=self.hypothesis
    )
    return t_test_results.pvalue

from_config(config) classmethod

Creates a TTestClusteredAnalysis object from a PowerConfig object

Source code in cluster_experiments/experiment_analysis.py
520
521
522
523
524
525
526
527
528
529
@classmethod
def from_config(cls, config):
    """Creates a TTestClusteredAnalysis object from a PowerConfig object"""
    return cls(
        cluster_cols=config.cluster_cols,
        target_col=config.target_col,
        treatment_col=config.treatment_col,
        treatment=config.treatment,
        hypothesis=config.hypothesis,
    )