from cluster_experiments.power_config import *
¶
PowerConfig
dataclass
¶
Dataclass to create a power analysis from.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
splitter
|
str
|
Splitter object to use |
required |
perturbator
|
str
|
Perturbator object to use, defaults to "" for normal power analysis |
''
|
analysis
|
str
|
ExperimentAnalysis object to use |
required |
washover
|
str
|
Washover object to use, defaults to "" |
''
|
cupac_model
|
str
|
CUPAC model to use |
''
|
n_simulations
|
int
|
number of simulations to run |
100
|
cluster_cols
|
Optional[List[str]]
|
list of columns to use as clusters |
None
|
target_col
|
str
|
column to use as target |
'target'
|
treatment_col
|
str
|
column to use as treatment |
'treatment'
|
treatment
|
str
|
what value of treatment_col should be considered as treatment |
'B'
|
control
|
str
|
what value of treatment_col should be considered as control |
'A'
|
strata_cols
|
Optional[List[str]]
|
columns to stratify with |
None
|
splitter_weights
|
Optional[List[float]]
|
weights to use for the splitter, should have the same length as treatments, each weight should correspond to an element in treatments |
None
|
switch_frequency
|
Optional[str]
|
how often to switch treatments |
None
|
time_col
|
Optional[str]
|
column to use as time in switchback splitter |
None
|
washover_time_delta
|
Optional[Union[timedelta, int]]
|
optional, int indicating the washover time in minutes or datetime.timedelta object |
None
|
covariates
|
Optional[List[str]]
|
list of columns to use as covariates |
None
|
average_effect
|
Optional[float]
|
average effect to use in the perturbator |
None
|
scale
|
Optional[float]
|
scale to use in stochastic perturbators |
None
|
range_min
|
Optional[float]
|
minimum value of the target range for relative beta perturbator, must be >-1 |
None
|
range_max
|
Optional[float]
|
maximum value of the target range for relative beta perturbator |
None
|
reduce_variance
|
Optional[bool]
|
whether to reduce variance in the BetaRelative perturbator |
None
|
segment_cols
|
Optional[List[str]]
|
list of segmentation columns for segmented perturbator |
None
|
treatments
|
Optional[List[str]]
|
list of treatments to use |
None
|
alpha
|
float
|
alpha value to use in the power analysis |
0.05
|
agg_col
|
str
|
column to use for aggregation in the CUPAC model |
''
|
smoothing_factor
|
float
|
smoothing value to use in the CUPAC model |
20
|
features_cupac_model
|
Optional[List[str]]
|
list of features to use in the CUPAC model |
None
|
seed
|
Optional[int]
|
seed to make the power analysis reproducible |
None
|
Usage:
from cluster_experiments.power_config import PowerConfig
from cluster_experiments.power_analysis import PowerAnalysis, NormalPowerAnalysis
p = PowerConfig(
analysis="gee",
splitter="clustered_balance",
perturbator="constant",
cluster_cols=["city"],
n_simulations=100,
alpha=0.05,
)
power_analysis = PowerAnalysis.from_config(p)
normal_power_analysis = NormalPowerAnalysis.from_config(p)
Source code in cluster_experiments/power_config.py
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
|